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J. Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Electromagnetic field equations for anisotropic media 

S. J. LEWAN DO WSKI t 
Instytut Fizylri P.4N, Warszawa, Zielna 37, Poland 
MS. recieced 29th Septembm 1970 

Abstract. The tensor identity 
a , curl E .  curl F = Ial(grad div o1-I , F-div a-' , grad F )  

where a is a constant and nonsingular matrix and F is a properly regular 
vector field, is derived and used t o  discuss the analogies between second order 
equations for fields in an anisotropic medium and the Helmholtz equation. 
The scalar equation for fields in uniform media is also considered; it is shown 
that this equation is of fourth order and for plane waves in an unbounded 
medium it is reduced to the generalized Fresnel equation. 

1. Introduction 
Electromagnetic fields in anisotropic media are described by complicated sets of 

second order differential equations. As yet there exists no general theory of these 
equations, but many individual problems were thoroughly investigated, in particular 
those concerning wave propagation in magnetized matter (cf. Lax and Button 1962). 

The experience gained so far shows that, apart from basic theoretical difficulties, 
the manipulation of lengthy initial equations is cumbersome and technically difficult. 
This is so even if only one of the constitutive parameters of the medium is a tensor, 
not to mention more general cases, which are also interesting and not devoid of some 
practical significance-for example, solid state maser cavities contain doubly aniso- 
tropic media whose electric and magnetic anisotropy axes usually do not coincide 
(Siegman 1964). 

In  this paper we present a modified form of the field equations for a general 
doubly anisotropic medium. This form allows one to avoid some of the technical 
difficulties mentioned above. Moreover, it is a direct continuation of the Helmholtz 
equation used in the isotropic case and therefore it gives better understanding of the 
similarities and differences between field description in isotropic and anisotropic 
media. 

2. Second order equations 
Let us consider a uniform medium characterized by constitutive tensors E and p.. 

Assuming that no free charges and currents are present, the amplitudes E and H of 
fields dependent on time as exp( - iwt) are solutions of the following second order 
equations (Epstein 1956) : 

c u r l p - I .  cur lE  = w 2 ~ .  E cur le - I .  curl H = u'p. H .  (1) 
Observe that the divergence equations 

div E . E = 0 div p. . H = 0 

are identically fulfilled by E and H a n d  in the present case there is no need to consider 
them separately. 

t Present address : Laboratoire de RCsonance Magnetique, FacultC des Sciences de Paris, 
Quai St Bernard, Paris V, France. 
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For an isotropic medium (E = E l ,  p. = p1 ; I denotes the identity matrix) equations (1) 
are usually replaced by the Helmholtz equations 

V 'F+W'E~F = 0 (3) 

(4) 

where F stands for E or H. The transformation follows from the identity 

curl curl F = grad div F - V2F 

and from equations (2). Therefore (3) is not equivalent to (1); to obtain the equiva- 
lence, equations (2) must be imposed on (3). I t  is interesting, however, that in some 
special problems the solutions of (3) with nonvanishing divergence cannot be neglected 
(cf. Slater 1950). 

We intend to show that in the anisotropic case considered here an analogue of 
equation (3) can be constructed. 

Instead of identity (4) we now use its generalization (see Appendix) : 

U .  cur la  , curl F = lerl(grad d i v i - l  . F - div&-l  . grad F )  ( 5 )  

which is valid for any nonsingular matrix of constant coefficients er and any twice 
differentiable (with continuous derivatives) vector field F ;  Cr denotes here the trans- 
pose of er and (er1 = det er. T o  emphasize the similarities between (4) and ( 5 )  we 
introduce the shorthand notation 

d iver .gradF = V . e r .  V F  = V u 2 .  (6) 
The  affinity between V2 and Vu2 is rather obvious; note that in the rectangular 
coordinate system { x i }  we have 

ZFk, 
grad diver . F = V . a , F = grad 2 M ~ ~ ,  -, 

k,k' 

Let us note also that if 00. a is treated as a symbolic matrix, then 

vu2 = T r ( V V  .a). (9) 

de t (VV .er) = 0. (10) 

In  5 3 we prove another important property of this matrix: it is singular: 

From (1) and (5) we immediately obtain our result. The equation for the electric 
field E, for instance, now takes the form (Lewandowski 1965) 

G/U2E-graddivk .E++ 'K.E = 0 
where 

It will be seen later that K is an important quantity. I t  appears that whether the med- 
ium can be considered as isotropic or uniaxial depends not so much on E and p. alone 
as on their 'ratio' given by K. 
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Although there is a very striking resemblance between equations (3) and ( l l ) ,  
an important difference should also be pointed out. We were not able to incorporate 
in (11) the information given by the divergence relations (2). Therefore, equations (1) 
and (11) are exactly equivalent. 

It follows that the relation 

d i v e .  E = d i v c . u .  E = 0 

must be satisfied identically by the solutions of (1 1). Indeed, let us apply div j. , to (1 1) 
and use definition (6) : 

d i v F .  V b 2 E -  V f i 2  d i v i .  E +  w2 d i v 6 .  u . E = 0. 

It remains to observe that Vb2 and div j., commute. 
Equation (1 1) can be used as a convenient algorithm for differential operations 

indicated in (l), since all vector products of the involved quantities are here replaced 
by Cartesian (scalar or dyadic) products. 

Another advantage is that (1 1) allows us to draw immediately certain conclusions 
which are not so apparent from (1). For instance, let us observe that the fields are 
governed by the Helmholtz equation not only in the case of an isotropic medium but 
also in the quasi-isotropic case of a medium whose constitutive tensors are both 
proportional to the same Hermitian matrix v .  Then 

and (1 1) is reduced to 

VV2 can be transformed to V2 by proper choice of the coordinate system (xi> (see 
Waldron 1957). 

U = (vlcpl 

V . 2 E + w 2 / v J c p E  = 0 .  

3. The fourth order equation 

order partial differential equations with constant coefficients 
Combining equations (7) ,  (8) and (1 1) we can write the following system of second 

where 

and 6 , k  is the Kronecker symbol. 
I n  each of equations (12) appear all three unknown scalar functions E,. Epstein 

(1956) and also Bochenek (1961) raised an interesting question: Isit possible to obtain 
separate equations for each individual field component E,? They investigated only 
the special case of a gyrotropic (i.e. uniaxial) medium and upon successive elimination 
of unknown functions they found that all E,  (and Hk)  are solutions of the same fourth 
order equation. We intend to show that the above statement is true for any uniform 
anisotropic medium. 

From (12) it is clear (cf. Courant and Hilbert 1962) that the arbitrary field com- 
ponent E ,  must indeed satisfy a separate differential equation of an order not higher 
than sixth, given by 

LEk = 0 (14) 



200 S. J .  Lewandawski 

where L is the symbolic determinant of the matrix (Lik) 

L = det(Ltk). (15)  
Straightforward, if rather tedious, calculations show that the operation L is of fourth 

We first prove that L cannot be of sixth order. Observe that the highest order 
order. 

term in L is given by the symbolic determinant 

D = de t (Vf iz l -VV .k) (16) 

and we wish to prove D = 0. Let us denote for brevity the matrix elements of 
VV . 6 by dik: 

Then we can write the following useful property of these elements 

dikdmn = dfndmk 

from which it follows that all second degree minors 

and hence also 

V V . ji) of V . 17. vanish 

lVpg(VT 9 e)  = dikdmn7dfndmlc = 0 (17) 

de t (VV .e)  = 0. (18) 

(19) 

Kow, for any 3 x 3 matrix 01 and number X we have (Mostomski and Stark 1963) 

det(u-XI) = det U - X  2 i'Mpp(a)+XzTr c t - X 3 .  
P 

Using this relation for U = VV. p and X = Vfi2 and taking into account (9), (17) 
and (18) we obtain D = 0, QED. 

T o  show that L must be of fourth order we require the explicit form of this 
operation, Further calculations, based on relation (19) and recorded elsewhere 
(Lewandowski 1969), yield 

q = lal(eTr . k-& .  . i). (21) 
The  fourth order terms in (20), given by the product Ve2VP2, cannot vanish since 
Vm2 = 0 implies U identically equal to zero (see definition ( 7 ) ) .  Thus equation (14) 
must be always of fourth order. 

It is interesting that the first and the last term in (20) is invariant under the 
transformation 

p. * E.  (22) 
If the middle term has the same property it means that equation (14) is satisfied also 
by the Cartesian components H k  of the magnetic field since the Maxwell equations are 
invariant under the transformation E * H, p * --E. T o  check this possibility we 
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rewrite (21) as (Lewandowski 1969) 

q = @+€1(€-1+C-1)-1- I+- 1 € 1 @ .  (23 1 
Clearly, q is transposed if subjected to (22), but this does not affect Vq2. Therefore, 
we can give to (14) a more general meaning 

L X = 0  X = E , H .  (24) 
It must be understood that the solutions of this equation constitute a wider class 

than the solutions of initial equations (1) (Courant and Hilbert 1962). Equivalence of 
both problems can be achieved only by retaining with (24) at least one of the lower- 
order scalar equations, for example, one of equations (12). 

4. ‘Diagonal’ anisotropy 
One of the obvious lines of further research is to see if L,  as given by (20) and (21) 

or (23), can be factorized into two second order operations. In  general this is not a 
very simple task and we limit ourselves only to a hypothetical medium with ‘diagonal’ 
anisotropy! that is, a medium for which there exists such a rectangular coordinate 
system { x i }  that in it both p and E are diagonal. 

Assume therefore 

where we adopt the periodicity convention of index i: 

Clearly, if for some i = s there is 

then 

i + 3  = i. 

p s + 1 e s + z  = P S C 2 E S t l  = a 

0: = a(ps0.2+E,v72) 

and 

In  this case the solutions of equation (24) in an unbounded region can be constructed 
as linear combinations of solutions of two independent Helmholtz equations. If 
p. = p i ,  we easily recognize that one of these equations, corresponding to the first 
factor in (2f), describes what in optics is called the ‘ordinary wave’, and the other 
one-the ‘extraordinary wave’ (cf. Landau and Lifshitz 1960). 

Probably the assumption of diagonal anisotropy and condition (26) represent the 
most general situation in which it is possible to factorize L. ,4 similar result was 
obtained earlier by Bochenek (1961) under a stronger assumption of uniaxial sym- 
metry : 

This indicates that (26) should be recognized as a generalized condition of uniaxial 
anisotropy. In  fact the matrix K appearing in (11) is, under this condition, uniaxial, 
as can be easily verified.? 

t A. Kujawski (1971 private communication) recently proved that to  factorize L it is suffi- 
cient to assume that K is uniaxial. 

E S f l  = E S + 2  psc1 = p s t z .  
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5. Fresnel's equation. Application to rectangular cavities 
Let us examine now if plane waves 

U eik.r  

can be the solutions of equation (24). For such functions we have identically 

where 

is a bilinear form of the Cartesian components ki  of the wave vector k. Therefore 
(24) is reduced to the ordinary algebraic equation (see also Fedorov 1958) 

K,2K,2 - w2Kn2 + 4€ I lp I = 0 (29) 
which is the necessary and sufficient condition that U describes a plane wave propagat- 
ing in the medium with (given) angular frequency w.  Substituting p = pI we obtain 
from (29) the familiar Fresnel equation. 

Equation (29) can also be utilized in a slightly less orthodox manner. Let there 
be an ordered set of numbers 

P I ,  k2,  k3 )  

assumed to be the rectangular components of wave vector k,  and let us find the angular 
frequency w of the plane wave associated with these numbers.? Obviously the problem 
has two solutions, w1 and w2,  given by the general formula 

In the case of diagonal anisotropy this can be written more compactly (Lewandowski 
1965) 

Y * i 2  = (Pi + 1 E* + 2 t pt + 2 E i  f 1)PiEikt2 

and the bracket (i, i') is defined by 
\ + l  f o r i =  i' 
[ - I  f o r i f i ' .  

(i, i') = 

If for some value s of the index i we have y -s2  = 0, that is, either if condition (26) 
is satisfied or As = 0, we obtain from (30a), putting if required As2 = 0, 

ks2 k S + I 2  k s + 2 2  KC2 
w,2 = -+- +-=- 

The last equalities above follow directly from (27). 

t The author is indebted for this idea and for the first draft of equation (30a) to Mr  J. 
Zagrodzinski. 
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I n  the isotropic case, (30) is further reduced to 

An identical formula is used for the determination of resonant frequencies of a 
rectangular cavity with perfectly conducting walls, only the K I  are then given a different 
meaning: 

where E ,  is the cavity length and nz, is a natural number. 
The  observed analogy is not accidental. It is caused by the fact that among the 

general solutions of equation (24), for which the operation Oa2 is equivalent to multi- 
plication by -Ka2,  there are not only travelling waves eiker but also standing waves of 
the form 

J-1 (Aleikrsi Bie-iktst) 

and these can be made to fit the appropriate homogeneous boundary conditions at 
surfaces xi = constant. In  particular, this holds for the functions 

3 

t = l  

L‘mt = co~(km,xt) sin(km,+ 1xt + 1) sin(Jzm,+ (32) 
to which are proportional the rectangular components E,, of the electric field inside 
an isotropically filled cavity : 

E m ,  = AmtUmi. (33) 

The  subscript m denotes here the ordered set of three numbers (ml ,  m2,  m 3 )  appearing 
in (31). 

Let us suppose for a while that the electric field in a rectangular cavity containing 
an anisotropic medium is also given by (32) and (33), differing from the isotropic 
solution only in the amplitudes Aml. The resonant frequencies would then be given 
by (30). Hence, for each value of index m, that is, for each set of functions U,,, there 
should be at least two sets of amplitudes, {Ami}l and generating two solutions, 
Em, and Em2, of Maxwell’s equations. The Em, and Em, fields would thus correspond 
to (normally degenerate) TE and TM modes in an isotropically filled cavity. 

Unfortunately, the above assumption is true only for ‘diagonal’ filling of the cavity 
(anisotropy axes coinciding with the coordinate axes set by the boundary conditions). 
However, the conclusion that the introduction of an anisotropic medium lifts the 
degeneracy of resonant modes is generally true and formula (30), for the case of an 
arbitrary cavity filling, yields the first order perturbational approximation of the 
resonant frequencies (Lewandowski 1969). 

6 .  Conclusions 
Our main concern in this paper was with what may be called the external shape of 

the field equations. Possible applications and consequences of our formulation were 
not pursued. It should be pointed out, however, that the introduction of our opera- 
tions Vg2 = div F .  grad and grad div (i could be helpful in the study of boundary 
value problems for closed regions. 
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As to the fourth order equation (24), it appears to be far too difficult for any 
attempts at direct solution. Therefore, its usefulness is probably limited to the 
approximate solution of certain eigenvalue problems, as demonstrated in 4 5. 

Acknowledgments 
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Appendix 

The author is grateful to hIr J. Zagrodzinski for many stimulating discussions and 

In  the proof of identity (5) we use index notation and the summation convention. 
Together with the usual vector product of vectors A and B 

( A  x B)r = A s B t E s t r  

where cQlr is the Ricci permutation symbol, we shall require vector products of a 
dyadic U and vector B ,  defined by 

We introduce also the abbreviation B/2x, = d,, so that the usual differential operations 
M-ill be written now as 

(A3) 
div F = v . F = dsFs (grad F)rs  = (VF1r.s = d,Fs 

(divu), = (V . u ) ~  = d p t k  (curl F), = (v x F ) ,  = erstdsFt 
and the operations involved in (5) will take the form 

Fa2 = divu . grad F = d,x,,d,F, (A41 

(145) (grad d iva  , F ) ,  = drdsgstFt = dsxstdrFt = (div U . grad F ) r .  

(i) Consider now the expression (U constant) 

[U * (V x F ) ] ,  = X q r E r s t d s F c  = dscstrkrqFc = ds(FxG)sq* 
This can be written as 

(ii) Let us compute 
u.(V x F )  = div(Fx&).  

But (Brand 1947) 
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or, with the aid of (45), 
p X ( 0  x F )  = p ,  ( S - V F ) .  

a * [V x {. * (V x F ) } ]  

Applying successively (A6), (A8) and (A9) to the expression 

we obtain immediately identity (5). 
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